Cargando…
Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles
The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use (31)P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065624/ https://www.ncbi.nlm.nih.gov/pubmed/27734828 http://dx.doi.org/10.1038/ncomms13008 |
Sumario: | The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use (31)P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn(11) cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2–4 nm) nanoparticles. |
---|