Cargando…
An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria
Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacte...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069768/ https://www.ncbi.nlm.nih.gov/pubmed/27822535 http://dx.doi.org/10.1128/mSystems.00028-15 |
_version_ | 1782460998576242688 |
---|---|
author | Maansson, Maria Vynne, Nikolaj G. Klitgaard, Andreas Nybo, Jane L. Melchiorsen, Jette Nguyen, Don D. Sanchez, Laura M. Ziemert, Nadine Dorrestein, Pieter C. Andersen, Mikael R. Gram, Lone |
author_facet | Maansson, Maria Vynne, Nikolaj G. Klitgaard, Andreas Nybo, Jane L. Melchiorsen, Jette Nguyen, Don D. Sanchez, Laura M. Ziemert, Nadine Dorrestein, Pieter C. Andersen, Mikael R. Gram, Lone |
author_sort | Maansson, Maria |
collection | PubMed |
description | Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient “mining” workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting. |
format | Online Article Text |
id | pubmed-5069768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50697682016-11-07 An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria Maansson, Maria Vynne, Nikolaj G. Klitgaard, Andreas Nybo, Jane L. Melchiorsen, Jette Nguyen, Don D. Sanchez, Laura M. Ziemert, Nadine Dorrestein, Pieter C. Andersen, Mikael R. Gram, Lone mSystems Research Article Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient “mining” workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting. American Society for Microbiology 2016-05-03 /pmc/articles/PMC5069768/ /pubmed/27822535 http://dx.doi.org/10.1128/mSystems.00028-15 Text en Copyright © 2016 Maansson et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Maansson, Maria Vynne, Nikolaj G. Klitgaard, Andreas Nybo, Jane L. Melchiorsen, Jette Nguyen, Don D. Sanchez, Laura M. Ziemert, Nadine Dorrestein, Pieter C. Andersen, Mikael R. Gram, Lone An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title | An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title_full | An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title_fullStr | An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title_full_unstemmed | An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title_short | An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria |
title_sort | integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069768/ https://www.ncbi.nlm.nih.gov/pubmed/27822535 http://dx.doi.org/10.1128/mSystems.00028-15 |
work_keys_str_mv | AT maanssonmaria anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT vynnenikolajg anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT klitgaardandreas anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT nybojanel anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT melchiorsenjette anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT nguyendond anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT sanchezlauram anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT ziemertnadine anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT dorresteinpieterc anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT andersenmikaelr anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT gramlone anintegratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT maanssonmaria integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT vynnenikolajg integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT klitgaardandreas integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT nybojanel integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT melchiorsenjette integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT nguyendond integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT sanchezlauram integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT ziemertnadine integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT dorresteinpieterc integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT andersenmikaelr integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria AT gramlone integratedmetabolomicandgenomicminingworkflowtouncoverthebiosyntheticpotentialofbacteria |