Cargando…
VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements
BACKGROUND: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature comp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073965/ https://www.ncbi.nlm.nih.gov/pubmed/27766961 http://dx.doi.org/10.1186/s12859-016-1214-3 |
_version_ | 1782461667769057280 |
---|---|
author | Toby, Inimary T. Levin, Mikhail K. Salinas, Edward A. Christley, Scott Bhattacharya, Sanchita Breden, Felix Buntzman, Adam Corrie, Brian Fonner, John Gupta, Namita T. Hershberg, Uri Marthandan, Nishanth Rosenfeld, Aaron Rounds, William Rubelt, Florian Scarborough, Walter Scott, Jamie K. Uduman, Mohamed Vander Heiden, Jason A. Scheuermann, Richard H. Monson, Nancy Kleinstein, Steven H. Cowell, Lindsay G. |
author_facet | Toby, Inimary T. Levin, Mikhail K. Salinas, Edward A. Christley, Scott Bhattacharya, Sanchita Breden, Felix Buntzman, Adam Corrie, Brian Fonner, John Gupta, Namita T. Hershberg, Uri Marthandan, Nishanth Rosenfeld, Aaron Rounds, William Rubelt, Florian Scarborough, Walter Scott, Jamie K. Uduman, Mohamed Vander Heiden, Jason A. Scheuermann, Richard H. Monson, Nancy Kleinstein, Steven H. Cowell, Lindsay G. |
author_sort | Toby, Inimary T. |
collection | PubMed |
description | BACKGROUND: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses. RESULTS: To help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format. CONCLUSIONS: The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/. We welcome participation from the community in developing the file format standard, as well as code contributions. |
format | Online Article Text |
id | pubmed-5073965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50739652016-10-27 VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements Toby, Inimary T. Levin, Mikhail K. Salinas, Edward A. Christley, Scott Bhattacharya, Sanchita Breden, Felix Buntzman, Adam Corrie, Brian Fonner, John Gupta, Namita T. Hershberg, Uri Marthandan, Nishanth Rosenfeld, Aaron Rounds, William Rubelt, Florian Scarborough, Walter Scott, Jamie K. Uduman, Mohamed Vander Heiden, Jason A. Scheuermann, Richard H. Monson, Nancy Kleinstein, Steven H. Cowell, Lindsay G. BMC Bioinformatics Proceedings BACKGROUND: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses. RESULTS: To help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format. CONCLUSIONS: The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/. We welcome participation from the community in developing the file format standard, as well as code contributions. BioMed Central 2016-10-06 /pmc/articles/PMC5073965/ /pubmed/27766961 http://dx.doi.org/10.1186/s12859-016-1214-3 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Proceedings Toby, Inimary T. Levin, Mikhail K. Salinas, Edward A. Christley, Scott Bhattacharya, Sanchita Breden, Felix Buntzman, Adam Corrie, Brian Fonner, John Gupta, Namita T. Hershberg, Uri Marthandan, Nishanth Rosenfeld, Aaron Rounds, William Rubelt, Florian Scarborough, Walter Scott, Jamie K. Uduman, Mohamed Vander Heiden, Jason A. Scheuermann, Richard H. Monson, Nancy Kleinstein, Steven H. Cowell, Lindsay G. VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title | VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title_full | VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title_fullStr | VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title_full_unstemmed | VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title_short | VDJML: a file format with tools for capturing the results of inferring immune receptor rearrangements |
title_sort | vdjml: a file format with tools for capturing the results of inferring immune receptor rearrangements |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073965/ https://www.ncbi.nlm.nih.gov/pubmed/27766961 http://dx.doi.org/10.1186/s12859-016-1214-3 |
work_keys_str_mv | AT tobyinimaryt vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT levinmikhailk vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT salinasedwarda vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT christleyscott vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT bhattacharyasanchita vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT bredenfelix vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT buntzmanadam vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT corriebrian vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT fonnerjohn vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT guptanamitat vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT hershberguri vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT marthandannishanth vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT rosenfeldaaron vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT roundswilliam vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT rubeltflorian vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT scarboroughwalter vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT scottjamiek vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT udumanmohamed vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT vanderheidenjasona vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT scheuermannrichardh vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT monsonnancy vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT kleinsteinstevenh vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements AT cowelllindsayg vdjmlafileformatwithtoolsforcapturingtheresultsofinferringimmunereceptorrearrangements |