Cargando…
Improving sensitivity of linear regression-based cell type-specific differential expression deconvolution with per-gene vs. global significance threshold
BACKGROUND: The goal of many human disease-oriented studies is to detect molecular mechanisms different between healthy controls and patients. Yet, commonly used gene expression measurements from blood samples suffer from variability of cell composition. This variability hinders the detection of dif...
Autores principales: | Glass, Edmund R., Dozmorov, Mikhail G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073979/ https://www.ncbi.nlm.nih.gov/pubmed/27766949 http://dx.doi.org/10.1186/s12859-016-1226-z |
Ejemplares similares
-
Predicting gene ontology from a global meta-analysis of 1-color microarray experiments
por: Dozmorov, Mikhail G, et al.
Publicado: (2011) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses
por: Dozmorov, Mikhail G, et al.
Publicado: (2011) -
Detrimental effects of duplicate reads and low complexity regions on RNA- and ChIP-seq data
por: Dozmorov, Mikhail G, et al.
Publicado: (2015) -
A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues
por: Li, Yi, et al.
Publicado: (2013)