Cargando…
N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats
BACKGROUND: Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075180/ https://www.ncbi.nlm.nih.gov/pubmed/27769245 http://dx.doi.org/10.1186/s12931-016-0453-1 |
_version_ | 1782461815046799360 |
---|---|
author | Wang, YanRui Yue, ShaoJie Luo, ZiQiang Cao, ChuanDing Yu, XiaoHe Liao, ZhengChang Wang, MingJie |
author_facet | Wang, YanRui Yue, ShaoJie Luo, ZiQiang Cao, ChuanDing Yu, XiaoHe Liao, ZhengChang Wang, MingJie |
author_sort | Wang, YanRui |
collection | PubMed |
description | BACKGROUND: Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. METHODS: In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. RESULTS: Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. CONCLUSIONS: NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats. |
format | Online Article Text |
id | pubmed-5075180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50751802016-10-27 N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats Wang, YanRui Yue, ShaoJie Luo, ZiQiang Cao, ChuanDing Yu, XiaoHe Liao, ZhengChang Wang, MingJie Respir Res Research BACKGROUND: Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. METHODS: In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. RESULTS: Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. CONCLUSIONS: NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats. BioMed Central 2016-10-21 2016 /pmc/articles/PMC5075180/ /pubmed/27769245 http://dx.doi.org/10.1186/s12931-016-0453-1 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Wang, YanRui Yue, ShaoJie Luo, ZiQiang Cao, ChuanDing Yu, XiaoHe Liao, ZhengChang Wang, MingJie N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title | N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title_full | N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title_fullStr | N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title_full_unstemmed | N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title_short | N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
title_sort | n-methyl-d-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075180/ https://www.ncbi.nlm.nih.gov/pubmed/27769245 http://dx.doi.org/10.1186/s12931-016-0453-1 |
work_keys_str_mv | AT wangyanrui nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT yueshaojie nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT luoziqiang nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT caochuanding nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT yuxiaohe nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT liaozhengchang nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats AT wangmingjie nmethyldaspartatereceptoractivationmediateslungfibroblastproliferationanddifferentiationinhyperoxiainducedchroniclungdiseaseinnewbornrats |