Cargando…

Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis

OBJECTIVE: There is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis. DESIGN:...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunt, L.H., Skinner, R.E.H., Roddy, K.A., Araujo, N.M., Rayfield, E.J., Hammond, C.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: W.B. Saunders For The Osteoarthritis Research Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081689/
https://www.ncbi.nlm.nih.gov/pubmed/27374878
http://dx.doi.org/10.1016/j.joca.2016.06.015
_version_ 1782462932006731776
author Brunt, L.H.
Skinner, R.E.H.
Roddy, K.A.
Araujo, N.M.
Rayfield, E.J.
Hammond, C.L.
author_facet Brunt, L.H.
Skinner, R.E.H.
Roddy, K.A.
Araujo, N.M.
Rayfield, E.J.
Hammond, C.L.
author_sort Brunt, L.H.
collection PubMed
description OBJECTIVE: There is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis. DESIGN: Zebrafish larvae were subjected to periods of flaccid paralysis, rigid paralysis or hyperactivity. Immunohistochemistry and transgenic reporters were used to monitor changes to muscle and cartilage. Finite Element Models were generated to investigate the mechanical conditions of rigid paralysis. Principal component analysis was used to test variations in skeletal morphology and metrics for shape, orientation and size were applied to describe cell behaviour. RESULTS: We show that flaccid and rigid paralysis and hypermobility affect cartilage element and joint shape. We describe differences between flaccid and rigid paralysis in regions showing high principal strain upon muscle contraction. We identify that altered shape and high strain occur in regions of cell differentiation and we show statistically significant changes to cell maturity occur in these regions in paralysed and hypermobile zebrafish. CONCLUSION: While flaccid and rigid paralysis and hypermobility affect skeletal morphogenesis they do so in subtly different ways. We show that some cartilage regions are unaffected in conditions such as rigid paralysis where static force is applied, whereas joint morphogenesis is perturbed by both flaccid and rigid paralysis; suggesting that joints require dynamic movement for accurate morphogenesis. A better understanding of how biomechanics impacts skeletal cell behaviour will improve our understanding of how foetal mechanics shape the developing joint.
format Online
Article
Text
id pubmed-5081689
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher W.B. Saunders For The Osteoarthritis Research Society
record_format MEDLINE/PubMed
spelling pubmed-50816892016-11-01 Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis Brunt, L.H. Skinner, R.E.H. Roddy, K.A. Araujo, N.M. Rayfield, E.J. Hammond, C.L. Osteoarthritis Cartilage Article OBJECTIVE: There is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis. DESIGN: Zebrafish larvae were subjected to periods of flaccid paralysis, rigid paralysis or hyperactivity. Immunohistochemistry and transgenic reporters were used to monitor changes to muscle and cartilage. Finite Element Models were generated to investigate the mechanical conditions of rigid paralysis. Principal component analysis was used to test variations in skeletal morphology and metrics for shape, orientation and size were applied to describe cell behaviour. RESULTS: We show that flaccid and rigid paralysis and hypermobility affect cartilage element and joint shape. We describe differences between flaccid and rigid paralysis in regions showing high principal strain upon muscle contraction. We identify that altered shape and high strain occur in regions of cell differentiation and we show statistically significant changes to cell maturity occur in these regions in paralysed and hypermobile zebrafish. CONCLUSION: While flaccid and rigid paralysis and hypermobility affect skeletal morphogenesis they do so in subtly different ways. We show that some cartilage regions are unaffected in conditions such as rigid paralysis where static force is applied, whereas joint morphogenesis is perturbed by both flaccid and rigid paralysis; suggesting that joints require dynamic movement for accurate morphogenesis. A better understanding of how biomechanics impacts skeletal cell behaviour will improve our understanding of how foetal mechanics shape the developing joint. W.B. Saunders For The Osteoarthritis Research Society 2016-11 /pmc/articles/PMC5081689/ /pubmed/27374878 http://dx.doi.org/10.1016/j.joca.2016.06.015 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brunt, L.H.
Skinner, R.E.H.
Roddy, K.A.
Araujo, N.M.
Rayfield, E.J.
Hammond, C.L.
Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title_full Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title_fullStr Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title_full_unstemmed Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title_short Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
title_sort differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081689/
https://www.ncbi.nlm.nih.gov/pubmed/27374878
http://dx.doi.org/10.1016/j.joca.2016.06.015
work_keys_str_mv AT bruntlh differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis
AT skinnerreh differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis
AT roddyka differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis
AT araujonm differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis
AT rayfieldej differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis
AT hammondcl differentialeffectsofalteredpatternsofmovementandstrainonjointcellbehaviourandskeletalmorphogenesis