Cargando…

Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells

The surface overexpression of nucleolin provides an anchor for the specific attachment of biomolecules to cancer and angiogenic endothelial cells. The peptide F3 is a high‐affinity ligand of the nucleolin receptor (NR) that has been investigated as a carrier to deliver biologically active molecules...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Phoebe Y.H., Hillyar, Christopher R.T., Able, Sarah, Vallis, Katherine A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082555/
https://www.ncbi.nlm.nih.gov/pubmed/27594091
http://dx.doi.org/10.1002/jlcr.3439
_version_ 1782463080486141952
author Lam, Phoebe Y.H.
Hillyar, Christopher R.T.
Able, Sarah
Vallis, Katherine A.
author_facet Lam, Phoebe Y.H.
Hillyar, Christopher R.T.
Able, Sarah
Vallis, Katherine A.
author_sort Lam, Phoebe Y.H.
collection PubMed
description The surface overexpression of nucleolin provides an anchor for the specific attachment of biomolecules to cancer and angiogenic endothelial cells. The peptide F3 is a high‐affinity ligand of the nucleolin receptor (NR) that has been investigated as a carrier to deliver biologically active molecules to tumors for both therapeutic and imaging applications. A site‐specific PEGylated F3 derivative was radiolabeled with [(18)F]Al‐F. The binding affinity and cellular distribution of the compound was assessed in tumor (H2N) and tumor endothelial (2H‐11) cells. Specific uptake via the NR was demonstrated by the siRNA knockdown of nucleolin in both cell lines. The partition and the plasma stability of the compound were assessed at 37°C. The enzyme‐mediated site‐specific modification of F3 to give NODA‐PEG‐F3 (NP‐F3) was achieved. Radiolabeling with [(18)F]Al‐F gave (18)F‐NP‐F3. (18)F‐NP‐F3 demonstrated high affinity for cancer and tumor endothelial cells. The siRNA knockdown of nucleolin resulted in a binding affinity reduction of 50% to 60%, confirming cell surface binding via the NR. NP‐F3 was stable in serum for 2 h. (18)F‐NP‐F3 is reported as the first (18)F‐labeled F3 derivative. It was obtained in a site‐specific, high‐yield, and efficient manner and binds to surface NR in the low nanomolar range, suggesting it has potential as a tumor and angiogenesis tracer.
format Online
Article
Text
id pubmed-5082555
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50825552016-11-09 Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells Lam, Phoebe Y.H. Hillyar, Christopher R.T. Able, Sarah Vallis, Katherine A. J Labelled Comp Radiopharm Research Articles The surface overexpression of nucleolin provides an anchor for the specific attachment of biomolecules to cancer and angiogenic endothelial cells. The peptide F3 is a high‐affinity ligand of the nucleolin receptor (NR) that has been investigated as a carrier to deliver biologically active molecules to tumors for both therapeutic and imaging applications. A site‐specific PEGylated F3 derivative was radiolabeled with [(18)F]Al‐F. The binding affinity and cellular distribution of the compound was assessed in tumor (H2N) and tumor endothelial (2H‐11) cells. Specific uptake via the NR was demonstrated by the siRNA knockdown of nucleolin in both cell lines. The partition and the plasma stability of the compound were assessed at 37°C. The enzyme‐mediated site‐specific modification of F3 to give NODA‐PEG‐F3 (NP‐F3) was achieved. Radiolabeling with [(18)F]Al‐F gave (18)F‐NP‐F3. (18)F‐NP‐F3 demonstrated high affinity for cancer and tumor endothelial cells. The siRNA knockdown of nucleolin resulted in a binding affinity reduction of 50% to 60%, confirming cell surface binding via the NR. NP‐F3 was stable in serum for 2 h. (18)F‐NP‐F3 is reported as the first (18)F‐labeled F3 derivative. It was obtained in a site‐specific, high‐yield, and efficient manner and binds to surface NR in the low nanomolar range, suggesting it has potential as a tumor and angiogenesis tracer. John Wiley and Sons Inc. 2016-09-04 2016-10 /pmc/articles/PMC5082555/ /pubmed/27594091 http://dx.doi.org/10.1002/jlcr.3439 Text en Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Lam, Phoebe Y.H.
Hillyar, Christopher R.T.
Able, Sarah
Vallis, Katherine A.
Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title_full Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title_fullStr Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title_full_unstemmed Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title_short Synthesis and evaluation of an (18)F‐labeled derivative of F3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
title_sort synthesis and evaluation of an (18)f‐labeled derivative of f3 for targeting surface‐expressed nucleolin in cancer and tumor endothelial cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082555/
https://www.ncbi.nlm.nih.gov/pubmed/27594091
http://dx.doi.org/10.1002/jlcr.3439
work_keys_str_mv AT lamphoebeyh synthesisandevaluationofan18flabeledderivativeoff3fortargetingsurfaceexpressednucleolinincancerandtumorendothelialcells
AT hillyarchristopherrt synthesisandevaluationofan18flabeledderivativeoff3fortargetingsurfaceexpressednucleolinincancerandtumorendothelialcells
AT ablesarah synthesisandevaluationofan18flabeledderivativeoff3fortargetingsurfaceexpressednucleolinincancerandtumorendothelialcells
AT valliskatherinea synthesisandevaluationofan18flabeledderivativeoff3fortargetingsurfaceexpressednucleolinincancerandtumorendothelialcells