Cargando…
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi‐parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084780/ https://www.ncbi.nlm.nih.gov/pubmed/27139250 http://dx.doi.org/10.1002/sim.6973 |