Cargando…
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi‐parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression...
Autores principales: | Dorie, Vincent, Harada, Masataka, Carnegie, Nicole Bohme, Hill, Jennifer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084780/ https://www.ncbi.nlm.nih.gov/pubmed/27139250 http://dx.doi.org/10.1002/sim.6973 |
Ejemplares similares
-
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
Sharp sensitivity bounds for mediation under unmeasured mediator-outcome
confounding
por: Ding, Peng, et al.
Publicado: (2016) -
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
por: Groenwold, Rolf H. H., et al.
Publicado: (2018) -
A cautionary note on a recently proposed sensitivity analysis for unmeasured confounding
por: Ciocănea-Teodorescu, Iuliana, et al.
Publicado: (2020) -
A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes
por: Mancuso, Christopher A, et al.
Publicado: (2020)