Cargando…

Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells

Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating...

Descripción completa

Detalles Bibliográficos
Autores principales: Starost, Laura Julia, Karassek, Sascha, Sano, Yasuteru, Kanda, Takashi, Kim, Kwang Sik, Dobrindt, Ulrich, Rüter, Christian, Schmidt, Marcus Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086651/
https://www.ncbi.nlm.nih.gov/pubmed/27754355
http://dx.doi.org/10.3390/toxins8100291
Descripción
Sumario:Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.