Cargando…

Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition

We use the generalized singular value decomposition (GSVD), formulated as a comparative spectral decomposition, to model patient-matched grades III and II, i.e., lower-grade astrocytoma (LGA) brain tumor and normal DNA copy-number profiles. A genome-wide tumor-exclusive pattern of DNA copy-number al...

Descripción completa

Detalles Bibliográficos
Autores principales: Aiello, Katherine A., Alter, Orly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087864/
https://www.ncbi.nlm.nih.gov/pubmed/27798635
http://dx.doi.org/10.1371/journal.pone.0164546
_version_ 1782463986507186176
author Aiello, Katherine A.
Alter, Orly
author_facet Aiello, Katherine A.
Alter, Orly
author_sort Aiello, Katherine A.
collection PubMed
description We use the generalized singular value decomposition (GSVD), formulated as a comparative spectral decomposition, to model patient-matched grades III and II, i.e., lower-grade astrocytoma (LGA) brain tumor and normal DNA copy-number profiles. A genome-wide tumor-exclusive pattern of DNA copy-number alterations (CNAs) is revealed, encompassed in that previously uncovered in glioblastoma (GBM), i.e., grade IV astrocytoma, where GBM-specific CNAs encode for enhanced opportunities for transformation and proliferation via growth and developmental signaling pathways in GBM relative to LGA. The GSVD separates the LGA pattern from other sources of biological and experimental variation, common to both, or exclusive to one of the tumor and normal datasets. We find, first, and computationally validate, that the LGA pattern is correlated with a patient’s survival and response to treatment. Second, the GBM pattern identifies among the LGA patients a subtype, statistically indistinguishable from that among the GBM patients, where the CNA genotype is correlated with an approximately one-year survival phenotype. Third, cross-platform classification of the Affymetrix-measured LGA and GBM profiles by using the Agilent-derived GBM pattern shows that the GBM pattern is a platform-independent predictor of astrocytoma outcome. Statistically, the pattern is a better predictor (corresponding to greater median survival time difference, proportional hazard ratio, and concordance index) than the patient’s age and the tumor’s grade, which are the best indicators of astrocytoma currently in clinical use, and laboratory tests. The pattern is also statistically independent of these indicators, and, combined with either one, is an even better predictor of astrocytoma outcome. Recurring DNA CNAs have been observed in astrocytoma tumors’ genomes for decades, however, copy-number subtypes that are predictive of patients’ outcomes were not identified before. This is despite the growing number of datasets recording different aspects of the disease, and due to an existing fundamental need for mathematical frameworks that can simultaneously find similarities and dissimilarities across the datasets. This illustrates the ability of comparative spectral decompositions to find what other methods miss.
format Online
Article
Text
id pubmed-5087864
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-50878642016-11-15 Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition Aiello, Katherine A. Alter, Orly PLoS One Research Article We use the generalized singular value decomposition (GSVD), formulated as a comparative spectral decomposition, to model patient-matched grades III and II, i.e., lower-grade astrocytoma (LGA) brain tumor and normal DNA copy-number profiles. A genome-wide tumor-exclusive pattern of DNA copy-number alterations (CNAs) is revealed, encompassed in that previously uncovered in glioblastoma (GBM), i.e., grade IV astrocytoma, where GBM-specific CNAs encode for enhanced opportunities for transformation and proliferation via growth and developmental signaling pathways in GBM relative to LGA. The GSVD separates the LGA pattern from other sources of biological and experimental variation, common to both, or exclusive to one of the tumor and normal datasets. We find, first, and computationally validate, that the LGA pattern is correlated with a patient’s survival and response to treatment. Second, the GBM pattern identifies among the LGA patients a subtype, statistically indistinguishable from that among the GBM patients, where the CNA genotype is correlated with an approximately one-year survival phenotype. Third, cross-platform classification of the Affymetrix-measured LGA and GBM profiles by using the Agilent-derived GBM pattern shows that the GBM pattern is a platform-independent predictor of astrocytoma outcome. Statistically, the pattern is a better predictor (corresponding to greater median survival time difference, proportional hazard ratio, and concordance index) than the patient’s age and the tumor’s grade, which are the best indicators of astrocytoma currently in clinical use, and laboratory tests. The pattern is also statistically independent of these indicators, and, combined with either one, is an even better predictor of astrocytoma outcome. Recurring DNA CNAs have been observed in astrocytoma tumors’ genomes for decades, however, copy-number subtypes that are predictive of patients’ outcomes were not identified before. This is despite the growing number of datasets recording different aspects of the disease, and due to an existing fundamental need for mathematical frameworks that can simultaneously find similarities and dissimilarities across the datasets. This illustrates the ability of comparative spectral decompositions to find what other methods miss. Public Library of Science 2016-10-31 /pmc/articles/PMC5087864/ /pubmed/27798635 http://dx.doi.org/10.1371/journal.pone.0164546 Text en © 2016 Aiello, Alter http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Aiello, Katherine A.
Alter, Orly
Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title_full Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title_fullStr Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title_full_unstemmed Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title_short Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition
title_sort platform-independent genome-wide pattern of dna copy-number alterations predicting astrocytoma survival and response to treatment revealed by the gsvd formulated as a comparative spectral decomposition
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087864/
https://www.ncbi.nlm.nih.gov/pubmed/27798635
http://dx.doi.org/10.1371/journal.pone.0164546
work_keys_str_mv AT aiellokatherinea platformindependentgenomewidepatternofdnacopynumberalterationspredictingastrocytomasurvivalandresponsetotreatmentrevealedbythegsvdformulatedasacomparativespectraldecomposition
AT alterorly platformindependentgenomewidepatternofdnacopynumberalterationspredictingastrocytomasurvivalandresponsetotreatmentrevealedbythegsvdformulatedasacomparativespectraldecomposition