Cargando…
Built-in microscale electrostatic fields induced by anatase–rutile-phase transition in selective areas promote osteogenesis
Bone has a built-in electric field because of the presence of piezoelectric collagen. To date, only externally applied electric fields have been used to direct cell behavior; however, these fields are not safe or practical for in vivo use. In this work, for the first time, we use a periodic microsca...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091659/ https://www.ncbi.nlm.nih.gov/pubmed/27818718 http://dx.doi.org/10.1038/am.2016.9 |
Sumario: | Bone has a built-in electric field because of the presence of piezoelectric collagen. To date, only externally applied electric fields have been used to direct cell behavior; however, these fields are not safe or practical for in vivo use. In this work, for the first time, we use a periodic microscale electric field (MEF) built into a titanium implant to induce osteogenesis. Such a MEF is generated by the periodic organization of a junction made of two parallel semiconducting TiO(2) zones: anatase and rutile with lower and higher electron densities, respectively. The junctions were formed through anatase–rutile-phase transition in selective areas using laser irradiation on the implants. The in vitro and in vivo studies confirmed that the built-in MEF was an efficient electrical cue for inducing osteogenic differentiation in the absence of osteogenic supplements and promoted bone regeneration around the implants. Our work opens up a new avenue toward bone repair and regeneration using built-in MEF. |
---|