Cargando…

Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme sup...

Descripción completa

Detalles Bibliográficos
Autores principales: McAlary, Luke, Aquilina, J. Andrew, Yerbury, Justin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095133/
https://www.ncbi.nlm.nih.gov/pubmed/27867347
http://dx.doi.org/10.3389/fnins.2016.00499
_version_ 1782465248701186048
author McAlary, Luke
Aquilina, J. Andrew
Yerbury, Justin J.
author_facet McAlary, Luke
Aquilina, J. Andrew
Yerbury, Justin J.
author_sort McAlary, Luke
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1(G37R), SOD1(G93A) and SOD1(V148G) having the greatest abundance of intermediate and unfolded SOD1. SOD1(G37R) was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1(G93A) and SOD1(V148G) in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1(G37R) with preformed SOD1(G93A) fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1(G37R).
format Online
Article
Text
id pubmed-5095133
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-50951332016-11-18 Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity McAlary, Luke Aquilina, J. Andrew Yerbury, Justin J. Front Neurosci Neuroscience Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1(G37R), SOD1(G93A) and SOD1(V148G) having the greatest abundance of intermediate and unfolded SOD1. SOD1(G37R) was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1(G93A) and SOD1(V148G) in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1(G37R) with preformed SOD1(G93A) fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1(G37R). Frontiers Media S.A. 2016-11-04 /pmc/articles/PMC5095133/ /pubmed/27867347 http://dx.doi.org/10.3389/fnins.2016.00499 Text en Copyright © 2016 McAlary, Aquilina and Yerbury. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
McAlary, Luke
Aquilina, J. Andrew
Yerbury, Justin J.
Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title_full Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title_fullStr Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title_full_unstemmed Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title_short Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity
title_sort susceptibility of mutant sod1 to form a destabilized monomer predicts cellular aggregation and toxicity but not in vitro aggregation propensity
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095133/
https://www.ncbi.nlm.nih.gov/pubmed/27867347
http://dx.doi.org/10.3389/fnins.2016.00499
work_keys_str_mv AT mcalaryluke susceptibilityofmutantsod1toformadestabilizedmonomerpredictscellularaggregationandtoxicitybutnotinvitroaggregationpropensity
AT aquilinajandrew susceptibilityofmutantsod1toformadestabilizedmonomerpredictscellularaggregationandtoxicitybutnotinvitroaggregationpropensity
AT yerburyjustinj susceptibilityofmutantsod1toformadestabilizedmonomerpredictscellularaggregationandtoxicitybutnotinvitroaggregationpropensity