Cargando…
Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo
Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096688/ https://www.ncbi.nlm.nih.gov/pubmed/27814358 http://dx.doi.org/10.1371/journal.pgen.1006417 |
_version_ | 1782465507073458176 |
---|---|
author | Langlois, Christine R. Pei, Fen Sindi, Suzanne S. Serio, Tricia R. |
author_facet | Langlois, Christine R. Pei, Fen Sindi, Suzanne S. Serio, Tricia R. |
author_sort | Langlois, Christine R. |
collection | PubMed |
description | Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI(+)] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. |
format | Online Article Text |
id | pubmed-5096688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50966882016-11-18 Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo Langlois, Christine R. Pei, Fen Sindi, Suzanne S. Serio, Tricia R. PLoS Genet Research Article Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI(+)] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. Public Library of Science 2016-11-04 /pmc/articles/PMC5096688/ /pubmed/27814358 http://dx.doi.org/10.1371/journal.pgen.1006417 Text en © 2016 Langlois et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Langlois, Christine R. Pei, Fen Sindi, Suzanne S. Serio, Tricia R. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title | Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title_full | Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title_fullStr | Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title_full_unstemmed | Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title_short | Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo |
title_sort | distinct prion domain sequences ensure efficient amyloid propagation by promoting chaperone binding or processing in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096688/ https://www.ncbi.nlm.nih.gov/pubmed/27814358 http://dx.doi.org/10.1371/journal.pgen.1006417 |
work_keys_str_mv | AT langloischristiner distinctpriondomainsequencesensureefficientamyloidpropagationbypromotingchaperonebindingorprocessinginvivo AT peifen distinctpriondomainsequencesensureefficientamyloidpropagationbypromotingchaperonebindingorprocessinginvivo AT sindisuzannes distinctpriondomainsequencesensureefficientamyloidpropagationbypromotingchaperonebindingorprocessinginvivo AT seriotriciar distinctpriondomainsequencesensureefficientamyloidpropagationbypromotingchaperonebindingorprocessinginvivo |