Cargando…
Multi-label ℓ(2)-regularized logistic regression for predicting activation/inhibition relationships in human protein-protein interaction networks
Protein-protein interaction (PPI) networks are naturally viewed as infrastructure to infer signalling pathways. The descriptors of signal events between two interacting proteins such as upstream/downstream signal flow, activation/inhibition relationship and protein modification are indispensable for...
Autores principales: | Mei, Suyu, Zhang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098220/ https://www.ncbi.nlm.nih.gov/pubmed/27819359 http://dx.doi.org/10.1038/srep36453 |
Ejemplares similares
-
GTB-PPI: Predict Protein–protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting
por: Yu, Bin, et al.
Publicado: (2020) -
Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer
por: Wu, Meng-Yun, et al.
Publicado: (2016) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Logistic regression with image covariates via the combination of L(1) and Sobolev regularizations
por: An, Baiguo, et al.
Publicado: (2020) -
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2012)