Cargando…
Training Deep Spiking Neural Networks Using Backpropagation
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099523/ https://www.ncbi.nlm.nih.gov/pubmed/27877107 http://dx.doi.org/10.3389/fnins.2016.00508 |