Cargando…
Training Deep Spiking Neural Networks Using Backpropagation
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a...
Autores principales: | Lee, Jun Haeng, Delbruck, Tobi, Pfeiffer, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099523/ https://www.ncbi.nlm.nih.gov/pubmed/27877107 http://dx.doi.org/10.3389/fnins.2016.00508 |
Ejemplares similares
-
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023)