Cargando…
Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of functi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105126/ https://www.ncbi.nlm.nih.gov/pubmed/27833160 http://dx.doi.org/10.1038/srep37035 |
Sumario: | Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination “nanochemotherapy” for treating patients with MPNSTs. |
---|