Cargando…
DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning
BACKGROUND: Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virt...
Autores principales: | Soufan, Othman, Ba-Alawi, Wail, Afeef, Moataz, Essack, Magbubah, Kalnis, Panos, Bajic, Vladimir B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105261/ https://www.ncbi.nlm.nih.gov/pubmed/27895719 http://dx.doi.org/10.1186/s13321-016-0177-8 |
Ejemplares similares
-
Mining Chemical Activity Status from High-Throughput Screening Assays
por: Soufan, Othman, et al.
Publicado: (2015) -
DASPfind: new efficient method to predict drug–target interactions
por: Ba-alawi, Wail, et al.
Publicado: (2016) -
DPubChem: a web tool for QSAR modeling and high-throughput virtual screening
por: Soufan, Othman, et al.
Publicado: (2018) -
DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm
por: Soufan, Othman, et al.
Publicado: (2015) -
Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)
por: Grötzinger, Stefan W., et al.
Publicado: (2014)