Cargando…

Computational model of a positive BDNF feedback loop in hippocampal neurons following inhibitory avoidance training

Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yili, Smolen, Paul, Alberini, Cristina M., Baxter, Douglas A., Byrne, John H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110990/
https://www.ncbi.nlm.nih.gov/pubmed/27918277
http://dx.doi.org/10.1101/lm.042044.116
Descripción
Sumario:Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the β isoform of the CCAAT/enhancer binding protein (C/EBPβ). Increased levels of C/EBPβ lead to increased bdnf expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPβ feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPβ feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown.