Cargando…

Applications of Spectral Gradient Algorithm for Solving Matrix ℓ(2,1)-Norm Minimization Problems in Machine Learning

The main purpose of this study is to propose, then analyze, and later test a spectral gradient algorithm for solving a convex minimization problem. The considered problem covers the matrix ℓ(2,1)-norm regularized least squares which is widely used in multi-task learning for capturing the joint featu...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Yunhai, Wang, Qiuyu, Liu, Lihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115710/
https://www.ncbi.nlm.nih.gov/pubmed/27861526
http://dx.doi.org/10.1371/journal.pone.0166169