Cargando…
Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay
Nonsense-mediated mRNA decay (NMD) is a cellular process that eliminates messenger RNA (mRNA) substrates with premature translation termination codons (PTCs). In addition, NMD regulates the expression of a number of physiological mRNAs, for example transcripts containing long 3′ UTRs. Current models...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118804/ https://www.ncbi.nlm.nih.gov/pubmed/27874031 http://dx.doi.org/10.1038/srep37311 |
Sumario: | Nonsense-mediated mRNA decay (NMD) is a cellular process that eliminates messenger RNA (mRNA) substrates with premature translation termination codons (PTCs). In addition, NMD regulates the expression of a number of physiological mRNAs, for example transcripts containing long 3′ UTRs. Current models implicate the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and translation termination in NMD. Accordingly, PABPC1 present within close proximity of a termination codon antagonizes NMD. Here, we use reporter mRNAs with different NMD-inducing 3′ UTRs to establish a general NMD-inhibiting property of PABPC1. NMD-inhibition is not limited to PABPC1, but can also be achieved by peptides consisting of the PABP-interacting motif 2 (PAM2) of different proteins when recruited to an NMD-inhibiting position of NMD reporter transcripts. The short PAM2 peptides efficiently suppress NMD activated by a long 3′ UTR, an exon-junction complex (EJC) and individual EJC components, and stabilize a PTC-containing β-globin mRNA. In conclusion, our results establish short PABPC1-recruiting peptides as potent but position-dependent inhibitors of mammalian NMD. |
---|