Cargando…
Hyperoxia downregulates angiotensin-converting enzyme-2 in human fetal lung fibroblasts
BACKGROUND: Angiotensin (ANG) II is involved in experimental hyperoxia-induced lung fibrosis. Angiotensin-converting enzyme-2 (ACE-2) degrades ANG II and is thus protective, but is downregulated in adult human and experimental lung fibrosis. Hyperoxia is a known cause of chronic fibrotic lung diseas...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119454/ https://www.ncbi.nlm.nih.gov/pubmed/25665060 http://dx.doi.org/10.1038/pr.2015.27 |
Sumario: | BACKGROUND: Angiotensin (ANG) II is involved in experimental hyperoxia-induced lung fibrosis. Angiotensin-converting enzyme-2 (ACE-2) degrades ANG II and is thus protective, but is downregulated in adult human and experimental lung fibrosis. Hyperoxia is a known cause of chronic fibrotic lung disease in neonates, but the role of ACE-2 in neonatal lung fibrosis is unknown. We hypothesized that ACE-2 in human fetal lung cells might be downregulated by hyperoxic gas. METHODS: Fetal human lung fibroblast IMR90 cells were exposed to hyperoxic (95% O(2)/5% CO(2)) or normoxic (21% O(2)/5% CO(2)) gas in vitro. Cells and culture media were recovered separately for assays of ACE-2 enzymatic activity, mRNA, and immunoreactive protein. RESULTS: Hyperoxia decreased ACE-2 immunoreactive protein and enzyme activity in IMR90 cells (both P < 0.01), but did not change ACE-2 mRNA. ACE-2 protein was increased in the cell supernatant, suggesting protease-mediated ectodomain shedding. TAPI-2, an inhibitor of TNF-α−converting enzyme (TACE/ADAM17), prevented both the decrease in cellular ACE-2 and the increase in soluble ACE-2 (both P < 0.05). CONCLUSION: These data show that ACE-2 is expressed in fetal human lung fibroblasts but is significantly decreased by hyperoxic gas. They also suggest that hyperoxia decreases ACE-2 through a shedding mechanism mediated by ADAM17/TACE. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/pr.2015.27) contains supplementary material, which is available to authorized users. |
---|