Cargando…

Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation...

Descripción completa

Detalles Bibliográficos
Autores principales: Doss, C. George Priya, Rajith, B., Garwasis, Nimisha, Mathew, Pretty Raju, Raju, Anand Solomon, Apoorva, K., William, Denise, Sadhana, N.R., Himani, Tanwar, Dike, IP.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121281/
https://www.ncbi.nlm.nih.gov/pubmed/27896051
http://dx.doi.org/10.1016/j.atg.2012.06.002
Descripción
Sumario:Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%), PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.