Cargando…
variancePartition: interpreting drivers of variation in complex gene expression studies
BACKGROUND: As large-scale studies of gene expression with multiple sources of biological and technical variation become widely adopted, characterizing these drivers of variation becomes essential to understanding disease biology and regulatory genetics. RESULTS: We describe a statistical and visual...
Autores principales: | Hoffman, Gabriel E., Schadt, Eric E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123296/ https://www.ncbi.nlm.nih.gov/pubmed/27884101 http://dx.doi.org/10.1186/s12859-016-1323-z |
Ejemplares similares
-
AnovArray: a set of SAS macros for the analysis of variance of gene expression data
por: Hennequet-Antier, Christelle, et al.
Publicado: (2005) -
Mining gene expression data by interpreting principal components
por: Roden, Joseph C, et al.
Publicado: (2006) -
Stacked regressions and structured variance partitioning for interpretable brain maps
por: Lin, Ruogu, et al.
Publicado: (2023) -
Partitioning gene-based variance of complex traits by gene score regression
por: Zhang, Wenmin, et al.
Publicado: (2020) -
Partitioning of copy-number genotypes in pedigrees
por: Perreault, Louis-Philippe Lemieux, et al.
Publicado: (2010)