Cargando…
Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24
Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or nonspecific binding to unintended membrane protein targets; however, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here we us...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123592/ https://www.ncbi.nlm.nih.gov/pubmed/27874871 http://dx.doi.org/10.1038/nchem.2591 |
Sumario: | Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or nonspecific binding to unintended membrane protein targets; however, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here we use high-resolution mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloprotease ZMPSTE24. This intramembrane protease plays a major role in converting prelamin A to mature lamin A. We monitored proteolysis of farnesylated prelamin A peptide by ZMPSTE24 and unexpectedly found retention of the C-terminal peptide product with the enzyme. We also resolved binding of zinc, lipids, and HIV protease inhibitors and showed that drug binding blocked prelamin A peptide cleavage and conferred stability to ZMPSTE24. Our results not only have relevance for the progeria-like side effects of certain HIV protease inhibitor drugs but also highlight new approaches for documenting off-target drug binding. |
---|