Cargando…
Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI
Antimicrobial peptide has the potential to be developed as new kind of antimicrobial agents with novel action mechanism. However, the susceptibility to protease is a drawback for potential peptides to be clinical used. d-amino acid substitution can be one way to increase the proteolytic stability of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5128008/ https://www.ncbi.nlm.nih.gov/pubmed/27900727 http://dx.doi.org/10.1186/s13568-016-0295-8 |
Sumario: | Antimicrobial peptide has the potential to be developed as new kind of antimicrobial agents with novel action mechanism. However, the susceptibility to protease is a drawback for potential peptides to be clinical used. d-amino acid substitution can be one way to increase the proteolytic stability of peptides. In the present study, we synthesized the d-lysines substituted analog (d-lys-MPI) and the d-enantiomer of polybia-MPI (D-MPI) to improve the proteolytic resistance of polybia-MPI. Our results showed that, the stability of its d-amino acid partially substituted analog d-lys-MPI was increased. However, it lost antimicrobial activity at the tested concentration with the loss of α-helix content. As shown in the CD spectra, after substitution, the spectra of D-MPI is symmetrical to MPI, indicated it turned into left hand α-helical conformation. Excitingly, the stability of D-MPI toward the tested protease was improved greatly. Notably, the antimicrobial activity of D-MPI was comparable to its L-counterpart MPI, even improved. In addition, the hemolytic activity of D-MPI was lowered. This also indicated that the action target of antimicrobial peptide polybia-MPI was not chiral specific. So, D-MPI may offer a therapeutic strategy to defend the infection of microbes, considering its stability to protease and relatively lower cytotoxicity to human erythrocytes. |
---|