Cargando…

Transfusional Iron Overload in a Cohort of Children with Sickle Cell Disease: Impact of Magnetic Resonance Imaging, Transfusion Method, and Chelation

BACKGROUND: Transfusions prevent a number of complications of sickle cell disease (SCD), but cause inevitable iron loading. With magnetic resonance imaging (MRI), liver iron can be monitored noninvasively. Erythrocytapheresis can limit iron loading and oral chelation provides a more tolerable altern...

Descripción completa

Detalles Bibliográficos
Autores principales: Stanley, Helen M., Friedman, David F., Webb, Jennifer, Kwiatkowski, Janet L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132054/
https://www.ncbi.nlm.nih.gov/pubmed/27100139
http://dx.doi.org/10.1002/pbc.26017
Descripción
Sumario:BACKGROUND: Transfusions prevent a number of complications of sickle cell disease (SCD), but cause inevitable iron loading. With magnetic resonance imaging (MRI), liver iron can be monitored noninvasively. Erythrocytapheresis can limit iron loading and oral chelation provides a more tolerable alternative to subcutaneous administration. The impact of these factors on control of iron burden in SCD has not been well studied. PROCEDURE: Iron monitoring practices, chelation use, and transfusion methods were assessed in our cohort of pediatric patients with SCD receiving chronic transfusion. The impact of these factors on iron burden was assessed. RESULTS: Among 84 subjects, the proportion that underwent appropriate liver iron concentration (LIC) assessment rose from 21% before to 81% after implementation of R2‐MRI in 2006. Among subjects with at least two R2‐MRI examinations, median LIC improved (13.2–7.9 mg/g dw, P = 0.027) from initial to final study. Most (67.9%) subjects initially received simple transfusions and subsequently transitioned to erythrocytapheresis. After switching, LIC improved from 13.1 to 4.3 mg/g dw (P < 0.001) after a median of 2.7 years and ferritin improved (2,471–392 ng/ml, P < 0.001) after a median of 4.2 years. Final serum ferritin and LIC correlated negatively with the proportion of transfusions administered by erythrocytapheresis and chelation adherence. CONCLUSIONS: Routine liver R2‐MRI should be performed in individuals with SCD who receive chronic red cell transfusions. Adherence with chelation should be assessed regularly and erythrocytapheresis utilized when feasible to minimize iron loading or reduce iron stores accumulated during periods of simple transfusion.