Cargando…

Directed Evolution of Dunaliella salina Ds-26-16 and Salt-Tolerant Response in Escherichia coli

Identification and evolution of salt tolerant genes are crucial steps in developing salt tolerant crops or microorganisms using biotechnology. Ds-26-16, a salt tolerant gene that was isolated from Dunaliella salina, encodes a transcription factor that can confer salt tolerance to a number of organis...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yuan, Dong, Yanping, Hong, Xiao, Pang, Xiaonan, Chen, Defu, Chen, Xiwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133814/
https://www.ncbi.nlm.nih.gov/pubmed/27801872
http://dx.doi.org/10.3390/ijms17111813
Descripción
Sumario:Identification and evolution of salt tolerant genes are crucial steps in developing salt tolerant crops or microorganisms using biotechnology. Ds-26-16, a salt tolerant gene that was isolated from Dunaliella salina, encodes a transcription factor that can confer salt tolerance to a number of organisms including Escherichia coli (E. coli), Haematococcus pluvialis and tobacco. To further improve its salt tolerance, a random mutagenesis library was constructed using deoxyinosine triphosphate-mediated error-prone PCR technology, and then screened using an E. coli expression system that is based on its broad-spectrum salt tolerance. Seven variants with enhanced salt tolerance were obtained. Variant EP-5 that contained mutation S32P showed the most improvement with the E. coli transformant enduring salt concentrations up to 1.54 M, in comparison with 1.03 M for the wild type gene. Besides, Ds-26-16 and EP-5 also conferred E. coli transformant tolerance to freezing, cold, heat, Cu(2+) and alkaline. Homology modeling revealed that mutation S32P in EP-5 caused the conformational change of N- and C-terminal α-helixes. Expression of Ds-26-16 and EP-5 maintained normal cellular morphology, increased the intracellular antioxidant enzymatic activity, reduced malondialdehyde content, and stimulated Nitric Oxide synthesis, thus enhancing salt tolerance to E. coli transformants.