Cargando…
A Predictive Model for Toxicity Effects Assessment of Biotransformed Hepatic Drugs Using Iterative Sampling Method
Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive...
Autores principales: | Tharwat, Alaa, Moemen, Yasmine S., Hassanien, Aboul Ella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5146749/ https://www.ncbi.nlm.nih.gov/pubmed/27934950 http://dx.doi.org/10.1038/srep38660 |
Ejemplares similares
-
Quantitative Structure-Activity Relationship Model for HCVNS5B inhibitors based on an Antlion Optimizer-Adaptive Neuro-Fuzzy Inference System
por: Elaziz, Mohamed Abd, et al.
Publicado: (2018) -
Machine learning paradigms
por: Hassanien, Aboul Ella
Publicado: (2018) -
An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
por: Ezzat, Dalia, et al.
Publicado: (2021) -
The prediction of virus mutation using neural networks and rough set techniques
por: Salama, Mostafa A., et al.
Publicado: (2016) -
Deep learning in drug discovery: an integrative review and future challenges
por: Askr, Heba, et al.
Publicado: (2022)