Cargando…
Learning pathology using collaborative vs. individual annotation of whole slide images: a mixed methods trial
BACKGROUND: Students in biomedical disciplines require understanding of normal and abnormal microscopic appearances of human tissues (histology and histopathology). For this purpose, practical classes in these disciplines typically use virtual microscopy, viewing digitised whole slide images in web...
Autores principales: | Sahota, Michael, Leung, Betty, Dowdell, Stephanie, Velan, Gary M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154086/ https://www.ncbi.nlm.nih.gov/pubmed/27955651 http://dx.doi.org/10.1186/s12909-016-0831-x |
Ejemplares similares
-
An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
por: Chen, Chi-Long, et al.
Publicado: (2021) -
Annotations, Ontologies, and Whole Slide Images – Development of an Annotated Ontology-Driven Whole Slide Image Library of Normal and Abnormal Human Tissue
por: Lindman, Karin, et al.
Publicado: (2019) -
Federated learning for computational pathology on gigapixel whole slide images
por: Lu, Ming Y., et al.
Publicado: (2022) -
Overcoming an Annotation Hurdle: Digitizing Pen Annotations from Whole Slide Images
por: Schüffler, Peter J., et al.
Publicado: (2021) -
Validation of Whole Slide Imaging in Pathology
por: Pantanowitz, Liron
Publicado: (2014)