Cargando…

Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish

Mutations in the extracellular matrix protein eyes shut homolog (EYS) cause photoreceptor degeneration in patients with retinitis pigmentosa 25 (RP25). Functions of EYS remain poorly understood, due in part to the lack of an EYS gene in mouse. We investigated the localization of vertebrate EYS prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Miao, Liu, Yu, Li, Jing, Natale, Brianna N., Cao, Shuqin, Wang, Dongliang, Amack, Jeffrey D., Hu, Huaiyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155541/
https://www.ncbi.nlm.nih.gov/pubmed/27737822
http://dx.doi.org/10.1242/bio.021584
Descripción
Sumario:Mutations in the extracellular matrix protein eyes shut homolog (EYS) cause photoreceptor degeneration in patients with retinitis pigmentosa 25 (RP25). Functions of EYS remain poorly understood, due in part to the lack of an EYS gene in mouse. We investigated the localization of vertebrate EYS proteins and engineered loss-of-function alleles in zebrafish. Immunostaining indicated that EYS localized near the connecting cilium/transition zone in photoreceptors. EYS also strongly localized to the cone outer segments and weakly to the rod outer segments and cone terminals in primate retinas. Analysis of mutant EYS zebrafish revealed disruption of the ciliary pocket in cone photoreceptors, indicating that EYS is required for maintaining the integrity of the ciliary pocket lumen. Mutant zebrafish exhibited progressive loss of cone and rod photoreceptors. Our results indicate that EYS protein localization is species-dependent and that EYS is required for maintaining ciliary pocket morphology and survival of photoreceptors in zebrafish.