Cargando…
Data-driven outbreak forecasting with a simple nonlinear growth model
Recent events have thrown the spotlight on infectious disease outbreak response. We developed a data-driven method, EpiGro, which can be applied to cumulative case reports to estimate the order of magnitude of the duration, peak and ultimate size of an ongoing outbreak. It is based on a surprisingly...
Autores principales: | Lega, Joceline, Brown, Heidi E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159251/ https://www.ncbi.nlm.nih.gov/pubmed/27770752 http://dx.doi.org/10.1016/j.epidem.2016.10.002 |
Ejemplares similares
-
EpiCovDA: a mechanistic COVID-19 forecasting model with data assimilation
por: Biegel, Hannah R., et al.
Publicado: (2021) -
Data-driven modeling and forecasting of COVID-19 outbreak for public policy making
por: Hasan, A., et al.
Publicado: (2022) -
Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting
por: Jin, Xue-Bo, et al.
Publicado: (2021) -
Aedes-AI: Neural network models of mosquito abundance
por: Kinney, Adrienne C., et al.
Publicado: (2021) -
Assessing the impact of data-driven limitations on tracing and forecasting the outbreak dynamics of COVID-19
por: Fiscon, Giulia, et al.
Publicado: (2021)