Cargando…
Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex
The exon junction complex (EJC) is a multiprotein complex integral to mRNA metabolism. Biochemistry and genetic studies have concluded that the EJC is composed of four core proteins, MAGOH, EIF4A3, RBM8A, and CASC3. Yet recent studies in Drosophila indicate divergent physiological functions for Bare...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159646/ https://www.ncbi.nlm.nih.gov/pubmed/27780844 http://dx.doi.org/10.1261/rna.058826.116 |
_version_ | 1782481805019971584 |
---|---|
author | Mao, Hanqian Brown, Hannah E. Silver, Debra L. |
author_facet | Mao, Hanqian Brown, Hannah E. Silver, Debra L. |
author_sort | Mao, Hanqian |
collection | PubMed |
description | The exon junction complex (EJC) is a multiprotein complex integral to mRNA metabolism. Biochemistry and genetic studies have concluded that the EJC is composed of four core proteins, MAGOH, EIF4A3, RBM8A, and CASC3. Yet recent studies in Drosophila indicate divergent physiological functions for Barentsz, the mammalian Casc3 ortholog, raising the question as to whether CASC3 is a constitutive component of the EJC. This issue remains poorly understood, particularly in an in vivo mammalian context. We previously found that haploinsufficiency for Magoh, Eif4a3, or Rbm8a disrupts neuronal viability and neural progenitor proliferation, resulting in severe microcephaly. Here, we use two new Casc3 mouse alleles to demonstrate developmental phenotypes that sharply contrast those of other core EJC components. Homozygosity for either null or hypomorphic Casc3 alleles led to embryonic and perinatal lethality, respectively. Compound embryos lacking Casc3 expression were smaller with proportionately reduced brain size. Mutant brains contained fewer neurons and progenitors, but no apoptosis, all phenotypes explained by developmental delay. This finding, which contrasts with severe neural phenotypes evident in other EJC mutants, indicates Casc3 is largely dispensable for brain development. In the developing brain, CASC3 protein expression is substoichiometric relative to MAGOH, EIF4A3, and RBM8A. Taken together, this argues that CASC3 is not an essential EJC component in brain development and suggests it could function in a tissue-specific manner. |
format | Online Article Text |
id | pubmed-5159646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-51596462018-01-01 Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex Mao, Hanqian Brown, Hannah E. Silver, Debra L. RNA Report The exon junction complex (EJC) is a multiprotein complex integral to mRNA metabolism. Biochemistry and genetic studies have concluded that the EJC is composed of four core proteins, MAGOH, EIF4A3, RBM8A, and CASC3. Yet recent studies in Drosophila indicate divergent physiological functions for Barentsz, the mammalian Casc3 ortholog, raising the question as to whether CASC3 is a constitutive component of the EJC. This issue remains poorly understood, particularly in an in vivo mammalian context. We previously found that haploinsufficiency for Magoh, Eif4a3, or Rbm8a disrupts neuronal viability and neural progenitor proliferation, resulting in severe microcephaly. Here, we use two new Casc3 mouse alleles to demonstrate developmental phenotypes that sharply contrast those of other core EJC components. Homozygosity for either null or hypomorphic Casc3 alleles led to embryonic and perinatal lethality, respectively. Compound embryos lacking Casc3 expression were smaller with proportionately reduced brain size. Mutant brains contained fewer neurons and progenitors, but no apoptosis, all phenotypes explained by developmental delay. This finding, which contrasts with severe neural phenotypes evident in other EJC mutants, indicates Casc3 is largely dispensable for brain development. In the developing brain, CASC3 protein expression is substoichiometric relative to MAGOH, EIF4A3, and RBM8A. Taken together, this argues that CASC3 is not an essential EJC component in brain development and suggests it could function in a tissue-specific manner. Cold Spring Harbor Laboratory Press 2017-01 /pmc/articles/PMC5159646/ /pubmed/27780844 http://dx.doi.org/10.1261/rna.058826.116 Text en © 2016 Mao et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Report Mao, Hanqian Brown, Hannah E. Silver, Debra L. Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title | Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title_full | Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title_fullStr | Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title_full_unstemmed | Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title_short | Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex |
title_sort | mouse models of casc3 reveal developmental functions distinct from other components of the exon junction complex |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159646/ https://www.ncbi.nlm.nih.gov/pubmed/27780844 http://dx.doi.org/10.1261/rna.058826.116 |
work_keys_str_mv | AT maohanqian mousemodelsofcasc3revealdevelopmentalfunctionsdistinctfromothercomponentsoftheexonjunctioncomplex AT brownhannahe mousemodelsofcasc3revealdevelopmentalfunctionsdistinctfromothercomponentsoftheexonjunctioncomplex AT silverdebral mousemodelsofcasc3revealdevelopmentalfunctionsdistinctfromothercomponentsoftheexonjunctioncomplex |