Cargando…

tCRISPRi: tunable and reversible, one-step control of gene expression

The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xin-tian, Jun, Yonggun, Erickstad, Michael J., Brown, Steven D., Parks, Adam, Court, Donald L., Jun, Suckjoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171832/
https://www.ncbi.nlm.nih.gov/pubmed/27996021
http://dx.doi.org/10.1038/srep39076
Descripción
Sumario:The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are laborious, and limited for quantitative study. Here, we report a tunable CRISPR-cas system, “tCRISPRi”, for precise and continuous titration of gene expression by more than 30-fold. Our tCRISPRi system employs various previous advancements into a single strain: (1) We constructed a new strain containing a tunable arabinose operon promoter P(BAD) to quantitatively control the expression of CRISPR-(d)Cas protein over two orders of magnitude in a plasmid-free system. (2) tCRISPRi is reversible, and gene expression is repressed under knockdown conditions. (3) tCRISPRi shows significantly less than 10% leaky expression. (4) Most important from a practical perspective, construction of tCRISPRi to target a new gene requires only one-step of oligo recombineering. Our results show that tCRISPRi, in combination with recombineering, provides a simple and easy-to-implement tool for gene expression control, and is ideally suited for construction of both individual strains and high-throughput tunable knockdown libraries.