Cargando…

In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters

Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Bademosi, Adekunle T., Lauwers, Elsa, Padmanabhan, Pranesh, Odierna, Lorenzo, Chai, Ye Jin, Papadopulos, Andreas, Goodhill, Geoffrey J., Verstreken, Patrik, van Swinderen, Bruno, Meunier, Frédéric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171881/
https://www.ncbi.nlm.nih.gov/pubmed/28045048
http://dx.doi.org/10.1038/ncomms13660
_version_ 1782484032277184512
author Bademosi, Adekunle T.
Lauwers, Elsa
Padmanabhan, Pranesh
Odierna, Lorenzo
Chai, Ye Jin
Papadopulos, Andreas
Goodhill, Geoffrey J.
Verstreken, Patrik
van Swinderen, Bruno
Meunier, Frédéric A.
author_facet Bademosi, Adekunle T.
Lauwers, Elsa
Padmanabhan, Pranesh
Odierna, Lorenzo
Chai, Ye Jin
Papadopulos, Andreas
Goodhill, Geoffrey J.
Verstreken, Patrik
van Swinderen, Bruno
Meunier, Frédéric A.
author_sort Bademosi, Adekunle T.
collection PubMed
description Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release.
format Online
Article
Text
id pubmed-5171881
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51718812016-12-23 In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters Bademosi, Adekunle T. Lauwers, Elsa Padmanabhan, Pranesh Odierna, Lorenzo Chai, Ye Jin Papadopulos, Andreas Goodhill, Geoffrey J. Verstreken, Patrik van Swinderen, Bruno Meunier, Frédéric A. Nat Commun Article Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release. Nature Publishing Group 2016-12-16 /pmc/articles/PMC5171881/ /pubmed/28045048 http://dx.doi.org/10.1038/ncomms13660 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Bademosi, Adekunle T.
Lauwers, Elsa
Padmanabhan, Pranesh
Odierna, Lorenzo
Chai, Ye Jin
Papadopulos, Andreas
Goodhill, Geoffrey J.
Verstreken, Patrik
van Swinderen, Bruno
Meunier, Frédéric A.
In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title_full In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title_fullStr In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title_full_unstemmed In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title_short In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
title_sort in vivo single-molecule imaging of syntaxin1a reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171881/
https://www.ncbi.nlm.nih.gov/pubmed/28045048
http://dx.doi.org/10.1038/ncomms13660
work_keys_str_mv AT bademosiadekunlet invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT lauwerselsa invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT padmanabhanpranesh invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT odiernalorenzo invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT chaiyejin invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT papadopulosandreas invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT goodhillgeoffreyj invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT verstrekenpatrik invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT vanswinderenbruno invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters
AT meunierfrederica invivosinglemoleculeimagingofsyntaxin1arevealspolyphosphoinositideandactivitydependenttrappinginpresynapticnanoclusters