Cargando…

Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes

PURPOSE: To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. METHODS: Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order t...

Descripción completa

Detalles Bibliográficos
Autores principales: Priyadarsini, Shrestha, Sarker-Nag, Akhee, Rowsey, Tyler G., Ma, Jian-Xing, Karamichos, Dimitrios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179241/
https://www.ncbi.nlm.nih.gov/pubmed/28005998
http://dx.doi.org/10.1371/journal.pone.0168845
Descripción
Sumario:PURPOSE: To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. METHODS: Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. RESULTS: Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. CONCLUSION: DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.