Cargando…

HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy

Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental f...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwak, Ji-Hye, Lee, Na-Hee, Lee, Hwa-Yong, Hong, In-Sun, Nam, Jeong-Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5190041/
https://www.ncbi.nlm.nih.gov/pubmed/27270657
http://dx.doi.org/10.18632/oncotarget.9846
Descripción
Sumario:Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44(+)/CD24(−/low) CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.