Cargando…

The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors

A metal–semiconductor–metal ultraviolet photodetector has been fabricated with a radiofrequency (RF)-sputtered InGaO thin film. Results for the devices fabricated under different oxygen partial pressure are here in discussed. Under low oxygen partial pressure, the devices work in the photoconductive...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Sheng-Po, Chang, Li-Yang, Li, Jyun-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191125/
https://www.ncbi.nlm.nih.gov/pubmed/27983694
http://dx.doi.org/10.3390/s16122145
Descripción
Sumario:A metal–semiconductor–metal ultraviolet photodetector has been fabricated with a radiofrequency (RF)-sputtered InGaO thin film. Results for the devices fabricated under different oxygen partial pressure are here in discussed. Under low oxygen partial pressure, the devices work in the photoconductive mode because of the large number of subgap states. Therefore, the devices exhibit internal gain. These defects in the films result in slow switching times and lower photo/dark current ratios. A higher flow ratio of oxygen during the sputtering process can effectively restrain the oxygen vacancies in the film. The responsivity of the photodetector fabricated under an oxygen flow ratio of 20% can reach 0.31 A/W. The rise time and decay time can reach 21 s and 27 s, respectively.