Cargando…
Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells
In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time‐ and concentration‐depe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192955/ https://www.ncbi.nlm.nih.gov/pubmed/27491646 http://dx.doi.org/10.1111/jcmm.12937 |
_version_ | 1782487878163496960 |
---|---|
author | Luo, Ming Liu, Qingyu He, Mingliang Yu, Zhiling Pi, Rongbiao Li, Min Yang, Xiaohong Wang, Shengnan Liu, Anmin |
author_facet | Luo, Ming Liu, Qingyu He, Mingliang Yu, Zhiling Pi, Rongbiao Li, Min Yang, Xiaohong Wang, Shengnan Liu, Anmin |
author_sort | Luo, Ming |
collection | PubMed |
description | In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time‐ and concentration‐dependent manner in T98G glioma cells but not in mouse normal neuronal HT22 cells. Gartanin, at low micromole, led to cell cycle arrest in G1 phase accompanied by inhibited expression level of G1 cell cycle regulatory proteins cyclin D1, while increased expression level of cyclin‐dependent kinase inhibitor p27Kip1. In addition, the secretion and activity of matrix metalloproteinases 2/9 (MMP‐2/‐9) were significantly suppressed in T98G cells treated with gartanin, and it might result from modulating mitogen‐activated protein kinases (MAPK) signalling pathway in T98G glioma cells. Moreover, gartanin significantly induced autophagy in T98G cells and increased GFP‐LC3 punctate fluorescence accompanied by the increased expression level of Beclin 1 and LC3‐II, while suppressed expression level of p62. Gartanin treatment resulted in obvious inhibition of PI3K/Akt/mTOR signalling pathway, which is important in modulating autophagy. Notably, gartanin‐mediated anti‐viability was significantly abrogated by autophagy inhibitors including 3‐methyladenine (3‐MA) and chloroquine (CQ). These results indicate that anti‐proliferation effect of gartanin in T98G cells is most likely via cell cycle arrest modulated by autophagy, which is regulated by PI3K/Akt/mTOR signalling pathway, while anti‐migration effect is most likely via suppression of MMP‐2/‐9 activity which is involved in MAPK signalling pathway. |
format | Online Article Text |
id | pubmed-5192955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51929552017-01-01 Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells Luo, Ming Liu, Qingyu He, Mingliang Yu, Zhiling Pi, Rongbiao Li, Min Yang, Xiaohong Wang, Shengnan Liu, Anmin J Cell Mol Med Original Articles In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time‐ and concentration‐dependent manner in T98G glioma cells but not in mouse normal neuronal HT22 cells. Gartanin, at low micromole, led to cell cycle arrest in G1 phase accompanied by inhibited expression level of G1 cell cycle regulatory proteins cyclin D1, while increased expression level of cyclin‐dependent kinase inhibitor p27Kip1. In addition, the secretion and activity of matrix metalloproteinases 2/9 (MMP‐2/‐9) were significantly suppressed in T98G cells treated with gartanin, and it might result from modulating mitogen‐activated protein kinases (MAPK) signalling pathway in T98G glioma cells. Moreover, gartanin significantly induced autophagy in T98G cells and increased GFP‐LC3 punctate fluorescence accompanied by the increased expression level of Beclin 1 and LC3‐II, while suppressed expression level of p62. Gartanin treatment resulted in obvious inhibition of PI3K/Akt/mTOR signalling pathway, which is important in modulating autophagy. Notably, gartanin‐mediated anti‐viability was significantly abrogated by autophagy inhibitors including 3‐methyladenine (3‐MA) and chloroquine (CQ). These results indicate that anti‐proliferation effect of gartanin in T98G cells is most likely via cell cycle arrest modulated by autophagy, which is regulated by PI3K/Akt/mTOR signalling pathway, while anti‐migration effect is most likely via suppression of MMP‐2/‐9 activity which is involved in MAPK signalling pathway. John Wiley and Sons Inc. 2016-08-05 2017-01 /pmc/articles/PMC5192955/ /pubmed/27491646 http://dx.doi.org/10.1111/jcmm.12937 Text en © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Luo, Ming Liu, Qingyu He, Mingliang Yu, Zhiling Pi, Rongbiao Li, Min Yang, Xiaohong Wang, Shengnan Liu, Anmin Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title | Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title_full | Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title_fullStr | Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title_full_unstemmed | Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title_short | Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells |
title_sort | gartanin induces cell cycle arrest and autophagy and suppresses migration involving pi3k/akt/mtor and mapk signalling pathway in human glioma cells |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192955/ https://www.ncbi.nlm.nih.gov/pubmed/27491646 http://dx.doi.org/10.1111/jcmm.12937 |
work_keys_str_mv | AT luoming gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT liuqingyu gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT hemingliang gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT yuzhiling gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT pirongbiao gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT limin gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT yangxiaohong gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT wangshengnan gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells AT liuanmin gartanininducescellcyclearrestandautophagyandsuppressesmigrationinvolvingpi3kaktmtorandmapksignallingpathwayinhumangliomacells |