Cargando…

Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance

The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chun-Yu, Yang, Chuan-Hui, Tsai, Yung-Fong, Liaw, Chih-Chuang, Chang, Wen-Yi, Hwang, Tsong-Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198739/
https://www.ncbi.nlm.nih.gov/pubmed/28012441
http://dx.doi.org/10.1016/j.redox.2016.12.018
Descripción
Sumario:The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU), a natural flavonoid isolated from Helminthostachys zeylanica (L) Hook, directly stimulates phospholipase C (PLC) and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL)-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS) diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca(2+) mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP(3)R). Blocking Ca(2+) mobilization, PLC, or IP(3)R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca(2+) mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases.