Cargando…

2-Deoxyglucose Suppresses ERK Phosphorylation in LKB1 and Ras Wild-Type Non-Small Cell Lung Cancer Cells

Tumor cells rely on aerobic glycolysis to generate ATP, namely the "Warburg" effect. 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, but its effect on cellular signaling pathways has not been fully elucidated. Herein, we sought to investigate the effect of 2-DG on ER...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Linlin, Liu, Xiuju, Fu, Haian, Zhou, Wei, Zhong, Diansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198974/
https://www.ncbi.nlm.nih.gov/pubmed/28033353
http://dx.doi.org/10.1371/journal.pone.0168793
Descripción
Sumario:Tumor cells rely on aerobic glycolysis to generate ATP, namely the "Warburg" effect. 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, but its effect on cellular signaling pathways has not been fully elucidated. Herein, we sought to investigate the effect of 2-DG on ERK function in lung cancer cells. We found that 2-DG inhibits ERK phosphorylation in a time and dose-dependent manner in lung cancer cells. This inhibition requires functional LKB1. LKB1 knockdown in LKB1 wildtype cells correlated with an increase in the basal level of p-ERK. Restoration of LKB1 in LKB1-null cells significantly inhibits ERK activation. Blocking AMPK function with AMPK inhibitor, AMPK siRNA or DN-AMPK diminishes the inhibitory effect of 2-DG on ERK, suggesting that 2-DG—induced ERK inhibition is mediated by LKB1/AMPK signaling. Moreover, IGF1-induced ERK phosphorylation is significantly decreased by 2-DG. Conversely, a subset of oncogenic mutants of K-Ras, the main upstream regulator of ERK, blocks 2-DG—induced LKB1/AMPK signaling. These findings reveal the potential cross-talk between LKB1/AMPK and ERK signaling and help to better understand the mechanism of action of 2-DG.