Cargando…
Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression
The angiogenic switch, the time at which a tumor becomes vascularized, is a critical step in tumor progression. Indeed, without blood supply, tumors will fail to grow beyond 1 mm(3) and are unlikely to disseminate. The extracellular matrix (ECM), a major component of the tumor microenvironment, is k...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223159/ https://www.ncbi.nlm.nih.gov/pubmed/28071719 http://dx.doi.org/10.1038/srep40495 |
_version_ | 1782493122436005888 |
---|---|
author | Naba, Alexandra Clauser, Karl R. Mani, D. R. Carr, Steven A. Hynes, Richard O. |
author_facet | Naba, Alexandra Clauser, Karl R. Mani, D. R. Carr, Steven A. Hynes, Richard O. |
author_sort | Naba, Alexandra |
collection | PubMed |
description | The angiogenic switch, the time at which a tumor becomes vascularized, is a critical step in tumor progression. Indeed, without blood supply, tumors will fail to grow beyond 1 mm(3) and are unlikely to disseminate. The extracellular matrix (ECM), a major component of the tumor microenvironment, is known to undergo significant changes during angiogenesis and tumor progression. However the extent of these changes remains unknown. In this study, we used quantitative proteomics to profile the composition of the ECM of pancreatic islets in a mouse model of insulinoma characterized by a precisely timed angiogenic switch. Out of the 120 ECM proteins quantified, 35 were detected in significantly different abundance as pancreatic islets progressed from being hyperplastic to angiogenic to insulinomas. Among these, the core ECM proteins, EFEMP1, fibrillin 1, and periostin were found in higher abundance, and decorin, Dmbt1, hemicentin, and Vwa5 in lower abundance. The angiogenic switch being a common feature of solid tumors, we propose that some of the proteins identified represent potential novel anti-angiogenic targets. In addition, we report the characterization of the ECM composition of normal pancreatic islets and propose that this could be of interest for the design of tissue-engineering strategies for treatment of diabetes. |
format | Online Article Text |
id | pubmed-5223159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52231592017-01-11 Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression Naba, Alexandra Clauser, Karl R. Mani, D. R. Carr, Steven A. Hynes, Richard O. Sci Rep Article The angiogenic switch, the time at which a tumor becomes vascularized, is a critical step in tumor progression. Indeed, without blood supply, tumors will fail to grow beyond 1 mm(3) and are unlikely to disseminate. The extracellular matrix (ECM), a major component of the tumor microenvironment, is known to undergo significant changes during angiogenesis and tumor progression. However the extent of these changes remains unknown. In this study, we used quantitative proteomics to profile the composition of the ECM of pancreatic islets in a mouse model of insulinoma characterized by a precisely timed angiogenic switch. Out of the 120 ECM proteins quantified, 35 were detected in significantly different abundance as pancreatic islets progressed from being hyperplastic to angiogenic to insulinomas. Among these, the core ECM proteins, EFEMP1, fibrillin 1, and periostin were found in higher abundance, and decorin, Dmbt1, hemicentin, and Vwa5 in lower abundance. The angiogenic switch being a common feature of solid tumors, we propose that some of the proteins identified represent potential novel anti-angiogenic targets. In addition, we report the characterization of the ECM composition of normal pancreatic islets and propose that this could be of interest for the design of tissue-engineering strategies for treatment of diabetes. Nature Publishing Group 2017-01-10 /pmc/articles/PMC5223159/ /pubmed/28071719 http://dx.doi.org/10.1038/srep40495 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Naba, Alexandra Clauser, Karl R. Mani, D. R. Carr, Steven A. Hynes, Richard O. Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title | Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title_full | Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title_fullStr | Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title_full_unstemmed | Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title_short | Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
title_sort | quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223159/ https://www.ncbi.nlm.nih.gov/pubmed/28071719 http://dx.doi.org/10.1038/srep40495 |
work_keys_str_mv | AT nabaalexandra quantitativeproteomicprofilingoftheextracellularmatrixofpancreaticisletsduringtheangiogenicswitchandinsulinomaprogression AT clauserkarlr quantitativeproteomicprofilingoftheextracellularmatrixofpancreaticisletsduringtheangiogenicswitchandinsulinomaprogression AT manidr quantitativeproteomicprofilingoftheextracellularmatrixofpancreaticisletsduringtheangiogenicswitchandinsulinomaprogression AT carrstevena quantitativeproteomicprofilingoftheextracellularmatrixofpancreaticisletsduringtheangiogenicswitchandinsulinomaprogression AT hynesrichardo quantitativeproteomicprofilingoftheextracellularmatrixofpancreaticisletsduringtheangiogenicswitchandinsulinomaprogression |