Cargando…

Diastereoselective Synthesis of Highly Substituted Tetrahydrofurans by Pd-Catalyzed Tandem Oxidative Cyclization–Redox Relay Reactions Controlled by Intramolecular Hydrogen Bonding

[Image: see text] Palladium-catalyzed oxidative cyclization of alkenols provides a convenient entry into cyclic ethers but typically proceeds with little or no diastereoselectivity for cyclization of trisubstituted olefins to form tetrahydrofurans due to the similar energies of competing 5-membered...

Descripción completa

Detalles Bibliográficos
Autores principales: Brooks, Joshua L., Xu, Liping, Wiest, Olaf, Tan, Derek S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224347/
https://www.ncbi.nlm.nih.gov/pubmed/28004933
http://dx.doi.org/10.1021/acs.joc.6b02053
Descripción
Sumario:[Image: see text] Palladium-catalyzed oxidative cyclization of alkenols provides a convenient entry into cyclic ethers but typically proceeds with little or no diastereoselectivity for cyclization of trisubstituted olefins to form tetrahydrofurans due to the similar energies of competing 5-membered transition-state conformations. Herein, a new variant of this reaction has been developed in which a PdCl(2)/1,4-benzoquinone catalyst system coupled with introduction of a hydrogen-bond acceptor in the substrate enhances both diastereoselectivity and reactivity. Cyclization occurs with 5-exo Markovnikov regioselectivity. Mechanistic and computational studies support an anti-oxypalladation pathway in which intramolecular hydrogen bonding increases the nucleophilicity of the alcohol and enforces conformational constraints that enhance diastereoselectivity. The cyclization is followed by a tandem redox-relay process that provides versatile side-chain functionalities for further derivatization.