Cargando…
Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment
Despite successful therapeutic options for estrogen receptor-α (ERα)+ breast cancer, resistance to endocrine therapy frequently occurs leading to tumor recurrence. In addition to intrinsic changes in the cancer cells, herein we demonstrate that tumor cell-microenvironment interactions can drive recu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226545/ https://www.ncbi.nlm.nih.gov/pubmed/27391074 http://dx.doi.org/10.18632/oncotarget.10443 |
_version_ | 1782493663206572032 |
---|---|
author | Capietto, Aude-Hélène Chan, Szeman Ruby Ricci, Biancamaria Allen, Julie A. Su, Xinming Novack, Deborah V Schreiber, Robert D. Faccio, Roberta |
author_facet | Capietto, Aude-Hélène Chan, Szeman Ruby Ricci, Biancamaria Allen, Julie A. Su, Xinming Novack, Deborah V Schreiber, Robert D. Faccio, Roberta |
author_sort | Capietto, Aude-Hélène |
collection | PubMed |
description | Despite successful therapeutic options for estrogen receptor-α (ERα)+ breast cancer, resistance to endocrine therapy frequently occurs leading to tumor recurrence. In addition to intrinsic changes in the cancer cells, herein we demonstrate that tumor cell-microenvironment interactions can drive recurrence at specific sites. By using two ERα+ cell lines derived from spontaneous mammary carcinomas in STAT1−/− mice (SSM2, SSM3), we establish that the bone microenvironment offers growth advantage over primary site or lung in the absence of ovarian hormones. While SSM3 did not engraft at primary and skeletal locations in the absence of estrogen, SSM2 selectively grew in bone of ovariectomized mice and following administration of aromatase inhibitors. However, SSM2 growth remained hormone-dependent at extraskeletal sites. Unexpectedly, bone-residing SSM2 cells retained ERα expression and JAK2/STAT3 activation regardless of the hormonal status. These data position the bone microenvironment as a unique site for acquisition of tumor/estrogen independency and identify the first ERα+ hormone-independent tumor model in immunocompetent mice. |
format | Online Article Text |
id | pubmed-5226545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-52265452017-01-18 Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment Capietto, Aude-Hélène Chan, Szeman Ruby Ricci, Biancamaria Allen, Julie A. Su, Xinming Novack, Deborah V Schreiber, Robert D. Faccio, Roberta Oncotarget Research Paper Despite successful therapeutic options for estrogen receptor-α (ERα)+ breast cancer, resistance to endocrine therapy frequently occurs leading to tumor recurrence. In addition to intrinsic changes in the cancer cells, herein we demonstrate that tumor cell-microenvironment interactions can drive recurrence at specific sites. By using two ERα+ cell lines derived from spontaneous mammary carcinomas in STAT1−/− mice (SSM2, SSM3), we establish that the bone microenvironment offers growth advantage over primary site or lung in the absence of ovarian hormones. While SSM3 did not engraft at primary and skeletal locations in the absence of estrogen, SSM2 selectively grew in bone of ovariectomized mice and following administration of aromatase inhibitors. However, SSM2 growth remained hormone-dependent at extraskeletal sites. Unexpectedly, bone-residing SSM2 cells retained ERα expression and JAK2/STAT3 activation regardless of the hormonal status. These data position the bone microenvironment as a unique site for acquisition of tumor/estrogen independency and identify the first ERα+ hormone-independent tumor model in immunocompetent mice. Impact Journals LLC 2016-07-06 /pmc/articles/PMC5226545/ /pubmed/27391074 http://dx.doi.org/10.18632/oncotarget.10443 Text en Copyright: © 2016 Capietto et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Capietto, Aude-Hélène Chan, Szeman Ruby Ricci, Biancamaria Allen, Julie A. Su, Xinming Novack, Deborah V Schreiber, Robert D. Faccio, Roberta Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title | Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title_full | Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title_fullStr | Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title_full_unstemmed | Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title_short | Novel ERα positive breast cancer model with estrogen independent growth in the bone microenvironment |
title_sort | novel erα positive breast cancer model with estrogen independent growth in the bone microenvironment |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226545/ https://www.ncbi.nlm.nih.gov/pubmed/27391074 http://dx.doi.org/10.18632/oncotarget.10443 |
work_keys_str_mv | AT capiettoaudehelene novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT chanszemanruby novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT riccibiancamaria novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT allenjuliea novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT suxinming novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT novackdeborahv novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT schreiberrobertd novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment AT faccioroberta novelerapositivebreastcancermodelwithestrogenindependentgrowthinthebonemicroenvironment |