Cargando…
Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies
The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved ME...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226922/ https://www.ncbi.nlm.nih.gov/pubmed/28017606 http://dx.doi.org/10.1016/j.cub.2016.11.014 |
_version_ | 1782493728901955584 |
---|---|
author | Yuan, Ivan Leontiou, Ioanna Amin, Priya May, Karen M. Soper Ní Chafraidh, Sadhbh Zlámalová, Eliška Hardwick, Kevin G. |
author_facet | Yuan, Ivan Leontiou, Ioanna Amin, Priya May, Karen M. Soper Ní Chafraidh, Sadhbh Zlámalová, Eliška Hardwick, Kevin G. |
author_sort | Yuan, Ivan |
collection | PubMed |
description | The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4, 5, 6, 7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10, 11, 12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13, 14, 15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1(Spc7) and Mps1(Mph1) is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization. |
format | Online Article Text |
id | pubmed-5226922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-52269222017-01-23 Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies Yuan, Ivan Leontiou, Ioanna Amin, Priya May, Karen M. Soper Ní Chafraidh, Sadhbh Zlámalová, Eliška Hardwick, Kevin G. Curr Biol Report The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4, 5, 6, 7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10, 11, 12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13, 14, 15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1(Spc7) and Mps1(Mph1) is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization. Cell Press 2017-01-09 /pmc/articles/PMC5226922/ /pubmed/28017606 http://dx.doi.org/10.1016/j.cub.2016.11.014 Text en © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Report Yuan, Ivan Leontiou, Ioanna Amin, Priya May, Karen M. Soper Ní Chafraidh, Sadhbh Zlámalová, Eliška Hardwick, Kevin G. Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title | Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title_full | Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title_fullStr | Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title_full_unstemmed | Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title_short | Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies |
title_sort | generation of a spindle checkpoint arrest from synthetic signaling assemblies |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226922/ https://www.ncbi.nlm.nih.gov/pubmed/28017606 http://dx.doi.org/10.1016/j.cub.2016.11.014 |
work_keys_str_mv | AT yuanivan generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT leontiouioanna generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT aminpriya generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT maykarenm generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT sopernichafraidhsadhbh generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT zlamalovaeliska generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies AT hardwickkeving generationofaspindlecheckpointarrestfromsyntheticsignalingassemblies |