Cargando…

Transcription Factor EB Controls Metabolic Flexibility during Exercise

The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that T...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansueto, Gelsomina, Armani, Andrea, Viscomi, Carlo, D’Orsi, Luca, De Cegli, Rossella, Polishchuk, Elena V., Lamperti, Costanza, Di Meo, Ivano, Romanello, Vanina, Marchet, Silvia, Saha, Pradip K., Zong, Haihong, Blaauw, Bert, Solagna, Francesca, Tezze, Caterina, Grumati, Paolo, Bonaldo, Paolo, Pessin, Jeffrey E., Zeviani, Massimo, Sandri, Marco, Ballabio, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241227/
https://www.ncbi.nlm.nih.gov/pubmed/28011087
http://dx.doi.org/10.1016/j.cmet.2016.11.003
_version_ 1782496150160408576
author Mansueto, Gelsomina
Armani, Andrea
Viscomi, Carlo
D’Orsi, Luca
De Cegli, Rossella
Polishchuk, Elena V.
Lamperti, Costanza
Di Meo, Ivano
Romanello, Vanina
Marchet, Silvia
Saha, Pradip K.
Zong, Haihong
Blaauw, Bert
Solagna, Francesca
Tezze, Caterina
Grumati, Paolo
Bonaldo, Paolo
Pessin, Jeffrey E.
Zeviani, Massimo
Sandri, Marco
Ballabio, Andrea
author_facet Mansueto, Gelsomina
Armani, Andrea
Viscomi, Carlo
D’Orsi, Luca
De Cegli, Rossella
Polishchuk, Elena V.
Lamperti, Costanza
Di Meo, Ivano
Romanello, Vanina
Marchet, Silvia
Saha, Pradip K.
Zong, Haihong
Blaauw, Bert
Solagna, Francesca
Tezze, Caterina
Grumati, Paolo
Bonaldo, Paolo
Pessin, Jeffrey E.
Zeviani, Massimo
Sandri, Marco
Ballabio, Andrea
author_sort Mansueto, Gelsomina
collection PubMed
description The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism.
format Online
Article
Text
id pubmed-5241227
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-52412272017-01-25 Transcription Factor EB Controls Metabolic Flexibility during Exercise Mansueto, Gelsomina Armani, Andrea Viscomi, Carlo D’Orsi, Luca De Cegli, Rossella Polishchuk, Elena V. Lamperti, Costanza Di Meo, Ivano Romanello, Vanina Marchet, Silvia Saha, Pradip K. Zong, Haihong Blaauw, Bert Solagna, Francesca Tezze, Caterina Grumati, Paolo Bonaldo, Paolo Pessin, Jeffrey E. Zeviani, Massimo Sandri, Marco Ballabio, Andrea Cell Metab Article The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism. Cell Press 2017-01-10 /pmc/articles/PMC5241227/ /pubmed/28011087 http://dx.doi.org/10.1016/j.cmet.2016.11.003 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mansueto, Gelsomina
Armani, Andrea
Viscomi, Carlo
D’Orsi, Luca
De Cegli, Rossella
Polishchuk, Elena V.
Lamperti, Costanza
Di Meo, Ivano
Romanello, Vanina
Marchet, Silvia
Saha, Pradip K.
Zong, Haihong
Blaauw, Bert
Solagna, Francesca
Tezze, Caterina
Grumati, Paolo
Bonaldo, Paolo
Pessin, Jeffrey E.
Zeviani, Massimo
Sandri, Marco
Ballabio, Andrea
Transcription Factor EB Controls Metabolic Flexibility during Exercise
title Transcription Factor EB Controls Metabolic Flexibility during Exercise
title_full Transcription Factor EB Controls Metabolic Flexibility during Exercise
title_fullStr Transcription Factor EB Controls Metabolic Flexibility during Exercise
title_full_unstemmed Transcription Factor EB Controls Metabolic Flexibility during Exercise
title_short Transcription Factor EB Controls Metabolic Flexibility during Exercise
title_sort transcription factor eb controls metabolic flexibility during exercise
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241227/
https://www.ncbi.nlm.nih.gov/pubmed/28011087
http://dx.doi.org/10.1016/j.cmet.2016.11.003
work_keys_str_mv AT mansuetogelsomina transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT armaniandrea transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT viscomicarlo transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT dorsiluca transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT deceglirossella transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT polishchukelenav transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT lamperticostanza transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT dimeoivano transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT romanellovanina transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT marchetsilvia transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT sahapradipk transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT zonghaihong transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT blaauwbert transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT solagnafrancesca transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT tezzecaterina transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT grumatipaolo transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT bonaldopaolo transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT pessinjeffreye transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT zevianimassimo transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT sandrimarco transcriptionfactorebcontrolsmetabolicflexibilityduringexercise
AT ballabioandrea transcriptionfactorebcontrolsmetabolicflexibilityduringexercise