Cargando…

Scale-dependent diffusion anisotropy in nanoporous silicon

Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement...

Descripción completa

Detalles Bibliográficos
Autores principales: Kondrashova, Daria, Lauerer, Alexander, Mehlhorn, Dirk, Jobic, Hervé, Feldhoff, Armin, Thommes, Matthias, Chakraborty, Dipanjan, Gommes, Cedric, Zecevic, Jovana, de Jongh, Petra, Bunde, Armin, Kärger, Jörg, Valiullin, Rustem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247748/
https://www.ncbi.nlm.nih.gov/pubmed/28106047
http://dx.doi.org/10.1038/srep40207
_version_ 1782497134111621120
author Kondrashova, Daria
Lauerer, Alexander
Mehlhorn, Dirk
Jobic, Hervé
Feldhoff, Armin
Thommes, Matthias
Chakraborty, Dipanjan
Gommes, Cedric
Zecevic, Jovana
de Jongh, Petra
Bunde, Armin
Kärger, Jörg
Valiullin, Rustem
author_facet Kondrashova, Daria
Lauerer, Alexander
Mehlhorn, Dirk
Jobic, Hervé
Feldhoff, Armin
Thommes, Matthias
Chakraborty, Dipanjan
Gommes, Cedric
Zecevic, Jovana
de Jongh, Petra
Bunde, Armin
Kärger, Jörg
Valiullin, Rustem
author_sort Kondrashova, Daria
collection PubMed
description Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.
format Online
Article
Text
id pubmed-5247748
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52477482017-01-23 Scale-dependent diffusion anisotropy in nanoporous silicon Kondrashova, Daria Lauerer, Alexander Mehlhorn, Dirk Jobic, Hervé Feldhoff, Armin Thommes, Matthias Chakraborty, Dipanjan Gommes, Cedric Zecevic, Jovana de Jongh, Petra Bunde, Armin Kärger, Jörg Valiullin, Rustem Sci Rep Article Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography. Nature Publishing Group 2017-01-20 /pmc/articles/PMC5247748/ /pubmed/28106047 http://dx.doi.org/10.1038/srep40207 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kondrashova, Daria
Lauerer, Alexander
Mehlhorn, Dirk
Jobic, Hervé
Feldhoff, Armin
Thommes, Matthias
Chakraborty, Dipanjan
Gommes, Cedric
Zecevic, Jovana
de Jongh, Petra
Bunde, Armin
Kärger, Jörg
Valiullin, Rustem
Scale-dependent diffusion anisotropy in nanoporous silicon
title Scale-dependent diffusion anisotropy in nanoporous silicon
title_full Scale-dependent diffusion anisotropy in nanoporous silicon
title_fullStr Scale-dependent diffusion anisotropy in nanoporous silicon
title_full_unstemmed Scale-dependent diffusion anisotropy in nanoporous silicon
title_short Scale-dependent diffusion anisotropy in nanoporous silicon
title_sort scale-dependent diffusion anisotropy in nanoporous silicon
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247748/
https://www.ncbi.nlm.nih.gov/pubmed/28106047
http://dx.doi.org/10.1038/srep40207
work_keys_str_mv AT kondrashovadaria scaledependentdiffusionanisotropyinnanoporoussilicon
AT lauereralexander scaledependentdiffusionanisotropyinnanoporoussilicon
AT mehlhorndirk scaledependentdiffusionanisotropyinnanoporoussilicon
AT jobicherve scaledependentdiffusionanisotropyinnanoporoussilicon
AT feldhoffarmin scaledependentdiffusionanisotropyinnanoporoussilicon
AT thommesmatthias scaledependentdiffusionanisotropyinnanoporoussilicon
AT chakrabortydipanjan scaledependentdiffusionanisotropyinnanoporoussilicon
AT gommescedric scaledependentdiffusionanisotropyinnanoporoussilicon
AT zecevicjovana scaledependentdiffusionanisotropyinnanoporoussilicon
AT dejonghpetra scaledependentdiffusionanisotropyinnanoporoussilicon
AT bundearmin scaledependentdiffusionanisotropyinnanoporoussilicon
AT kargerjorg scaledependentdiffusionanisotropyinnanoporoussilicon
AT valiullinrustem scaledependentdiffusionanisotropyinnanoporoussilicon