Cargando…

Fluid shear stress activates YAP1 to promote cancer cell motility

Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hyun Jung, Diaz, Miguel F., Price, Katherine M., Ozuna, Joyce A., Zhang, Songlin, Sevick-Muraca, Eva M., Hagan, John P., Wenzel, Pamela L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253685/
https://www.ncbi.nlm.nih.gov/pubmed/28098159
http://dx.doi.org/10.1038/ncomms14122
Descripción
Sumario:Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1–TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK–LIMK–cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.