Cargando…
Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies
Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5257006/ https://www.ncbi.nlm.nih.gov/pubmed/28060813 http://dx.doi.org/10.1371/journal.pcbi.1005321 |
_version_ | 1782498793906765824 |
---|---|
author | Abel zur Wiesch, Pia Clarelli, Fabrizio Cohen, Ted |
author_facet | Abel zur Wiesch, Pia Clarelli, Fabrizio Cohen, Ted |
author_sort | Abel zur Wiesch, Pia |
collection | PubMed |
description | Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood. |
format | Online Article Text |
id | pubmed-5257006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52570062017-02-17 Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies Abel zur Wiesch, Pia Clarelli, Fabrizio Cohen, Ted PLoS Comput Biol Research Article Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most effective when they are administered periodically at high doses, while others work best when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and leading to long and costly experiments. We use mathematical models that describe both bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctuating antibiotic concentrations on individual bacterial cells and bacterial populations. We show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and the antibiotic-target complex half-life are sufficient to explain which treatment strategy is most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept constantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell envelopes slowly to reach their target, there is a delay in the onset of action that may be reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent dosing. Our model can be used as a tool in the rational design of treatment for bacterial infections. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where the effects of physiological fluctuations of drug concentration are also poorly understood. Public Library of Science 2017-01-06 /pmc/articles/PMC5257006/ /pubmed/28060813 http://dx.doi.org/10.1371/journal.pcbi.1005321 Text en © 2017 Abel zur Wiesch et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Abel zur Wiesch, Pia Clarelli, Fabrizio Cohen, Ted Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title | Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title_full | Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title_fullStr | Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title_full_unstemmed | Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title_short | Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies |
title_sort | using chemical reaction kinetics to predict optimal antibiotic treatment strategies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5257006/ https://www.ncbi.nlm.nih.gov/pubmed/28060813 http://dx.doi.org/10.1371/journal.pcbi.1005321 |
work_keys_str_mv | AT abelzurwieschpia usingchemicalreactionkineticstopredictoptimalantibiotictreatmentstrategies AT clarellifabrizio usingchemicalreactionkineticstopredictoptimalantibiotictreatmentstrategies AT cohented usingchemicalreactionkineticstopredictoptimalantibiotictreatmentstrategies |